Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1.
نویسندگان
چکیده
Plant freezing tolerance involves the prevention of lethal freeze-induced damage to the plasma membrane. We hypothesized that plant freezing tolerance involves membrane resealing, which, in animal cells, is accomplished by calcium-dependent exocytosis following mechanical disruption of the plasma membrane. In Arabidopsis thaliana protoplasts, extracellular calcium enhanced not only freezing tolerance but also tolerance to electroporation, which typically punctures the plasma membrane. However, calcium did not enhance survival when protoplasts were exposed to osmotic stress that mimicked freeze-induced dehydration. Calcium-dependent freezing tolerance was also detected with leaf sections in which ice crystals intruded into tissues. Interestingly, calcium-dependent freezing tolerance was inhibited by extracellular addition of an antibody against the cytosolic region of SYT1, a homolog of synaptotagmin known to be a calcium sensor that initiates exocytosis. This inhibition indicates that the puncture allowing the antibody to flow into the cytoplasm occurs during freeze/thawing. Thus, we propose that calcium-dependent freezing tolerance results from resealing of the punctured site. Protoplasts or leaf sections isolated from Arabidopsis SYT1-RNA interference (RNAi) plants lost calcium-dependent freezing tolerance, and intact SYT1-RNAi plants had lower freezing tolerance than control plants. Taken together, these findings suggest that calcium-dependent freezing tolerance results from membrane resealing and that this mechanism involves SYT1 function.
منابع مشابه
Synaptotagmin 1 Negatively Controls the Two Distinct Immune Secretory Pathways to Powdery Mildew Fungi in Arabidopsis.
PEN1, one of the plasma membrane (PM) syntaxins, comprises an immune exocytic pathway by forming the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex with SNAP33 and VAMP721/722 in plants. Although this secretory pathway is also involved in plant growth and development, how plants control their exocytic activity is as yet poorly understood. Since constitutiv...
متن کاملArabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum–plasma membrane contact sites
Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essentia...
متن کاملArabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability.
Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decre...
متن کاملOverlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles.
Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sor...
متن کاملLocalization of synaptotagmin-binding domains on syntaxin.
Synaptotagmin, an abundant calcium- and phospholipid-binding protein of synaptic vesicles, has been proposed to regulate neurotransmitter release at the nerve terminal. To understand better the biochemical mechanism of neurotransmitter release, we have investigated the calcium-dependent and -independent protein-protein interactions between synaptotagmin I and syntaxin 1a, a subunit of the recep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2008